NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.

نویسندگان

  • H T Cline
  • M Constantine-Paton
چکیده

The development of sensory maps is thought to require an activity-dependent structural rearrangement of afferent terminal arbors within the CNS which recreates the topographic relations of sensory somata present in the periphery. In the frog retinotectal projection, activation of the NMDA receptor plays a role in this structural plasticity. Exposure of the optic tectum of tadpoles to NMDA receptor antagonists results in a rearrangement of retinal ganglion cell arbors so that their organization into a topographic projection and eye-specific stripes is disrupted (Cline et al., 1987; Cline and Constantine-Paton, 1989). Exposure of the optic tectum to the receptor agonist, NMDA, increases the eye-specific segregation of these arbors (Cline et al., 1987). We examined the projection of the supernumerary retina and the morphology of individual retinal afferent arbors of untreated, NMDA-treated, APV-treated, MK801-treated, and MK801/NMDA-treated 3-eyed tadpoles and young postmetamorphic frogs in an effort to understand how NMDA receptor activation is involved in the growth and ordering of retinal arbors. Treatments with MK801 in combination with NMDA resulted in a desegregation of eye-specific stripes, whereas treatments with MK801 or NMDA alone did not. As reported previously, APV treatment resulted in stripe desegregation without increasing the tangential area (measured from 2-dimensional drawings) of the terminal arbors. However, a detailed analysis revealed that the APV-treated tadpole arbors have 35% reduction in branch density (branch tips/area) compared to untreated 3-eyed tadpole arbors. We treated the optic tectum with a range of concentrations of NMDA prepared in the slow-release plastic Elvax. NMDA at 10(-4) M in Elvax was the optimal concentration to produce the sharpening of stripe borders. Exposure of the tectum to NMDA at 10(-6) M in Elvax produced no change in the stripe pattern, while 10(-2) M NMDA in Elvax resulted in beading of the arbors. At the optimal concentration NMDA treatment results in a 75% reduction in the number of axons crossing from a stripe to an interstripe zone. Drawings of individual HRP-labeled, NMDA-treated arbors demonstrate that they have fewer branch points and fewer branch tips. NMDA treatment reduced arbor density by approximately 50%. Arbors drawn from untreated postmetamorphic frogs have twice the branch density of arbors from untreated tadpoles. NMDA treatment in these animals reduced the branch density by 55%, comparable to the reduction seen in tadpole branch density. Our data support a specific hypothesis for NMDA receptor involvement in the activity-dependent structural refinement process within the developing retinotectal projection.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina.

Although correlated neural activity is a hallmark of many regions of the developing nervous system, the neural events underlying its propagation remain largely unknown. In the developing vertebrate retina, waves of spontaneous, correlated neural activity sweep across the ganglion cell layer. Here, we demonstrate that L-type Ca(2+) channel agonists induce large, frequent, rapidly propagating wav...

متن کامل

Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.

The influence of neural activity on the morphology of retinal-axon-terminal arbors and the precision of the developing retinotectal projection in zebrafish embryos was explored. Terminal-arbor morphology and their distribution in the tectum was determined with anatomical fiber-tracing methods using the fluorescent dyes dil and diO. To allow development under activity-deprived conditions, TTX wa...

متن کامل

Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment.

Activation of the NMDA subtype of glutamate receptor has been implicated in structural synaptic plasticity in many developing sensory systems. In the frog retinotectal system, chronic exposure of the optic tectum to NMDA, which decreases the effectiveness of NMDA receptors (Debski et al., 1991), results in the pruning of the branches of retinal terminal arbors (Cline and Constantine-Paton, 1990...

متن کامل

Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.

In the retinotectal projection, synapses guide retinal ganglion cell (RGC) axon arbor growth by promoting branch formation and by selectively stabilizing branches. To ask whether presynaptic function is required for this dual role of synapses, we have suppressed presynaptic function in single RGCs using targeted expression of tetanus toxin light-chain fused to enhanced green fluorescent protein...

متن کامل

Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog.

Forty-two monoclonal antibodies (mAbs) generated against nicotinic acetylcholine receptors (AChRs) from electric organ were tested for their ability to cross-react in the optic tectum of the frog Rana pipiens. Twenty-eight of the mAbs tested (67%) bound to the optic neuropil of the tectum as revealed by immunoperoxidase cytochemistry. The pattern of peroxidase stain for cross-reacting mAbs corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 1990